

Interactive Financial eXchange

Forum

RESTful Implementation of IFX

Demonstration Design Review
Based on IFX Specification Version 2.4

July 2018

Interactive Financial eXchange Forum
http://www.ifxforum.org

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA.
All Rights Reserved.

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 2

Disclaimer
The IFX Forum makes no warranties whatsoever with respect to the contents of this specification.
Without limitation, the IFX Forum makes no warranty (i) that the information contained in the
specification is accurate, error-free or describes a practically realizable product or service, or (ii) that the
product or service described in the specification can be produced or provided without infringing third-
party rights or violating applicable laws or regulations.

RESERVATION OF RIGHTS: The contents of this specification are protected by copyright and other
intellectual property laws. The IFX Forum expressly reserves all rights in such content.

Document Change Summary

Date/
Revision

Who Section(s)
Changed

Revision summary

June 1, 2018 IFX API WG All Original Draft
July 13, 2018 Copy Editors Many Style edits and formatting

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 3

Table of Contents
1 Introduction ... 4

2 Model Comparisons ... 5

2.1 Process Flow.. 5

2.2 Design Considerations... 6

3 The IFX RESTful Lab .. 8

3.1 General Discussion .. 8

3.2 IFX-Specific Extensions .. 9

3.3 Sample Data and Storage .. 9

3.4 Our Implementation Platform .. 9

4 Sample APIs ... 10

4.1 Overview ... 10

4.2 Validate Account ... 11

4.3 Get Account Balance ... 11

4.4 Get PSD2 Account Information ... 11

4.5 Get IFX Account Information .. 11

4.6 Server Interaction ... 12

5 Summary .. 13

5.1 Key Learnings .. 13

5.2 Next Steps ... 13

5.3 How You Can Leverage Our Results .. 14

5.4 Conclusion ... 14

6 Appendix A .. 16

6.1 Example Client-side JavaScript Code .. 16

7 Appendix B ... 18

7.1 Further Exploration of Alternative Design Options .. 18

7.2 Further Discussion of Version Management .. 18

8 Appendix C ... 20

8.1 IFX Messages adapted to HTTP Verbs ... 20

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 4

1 Introduction
The Interactive Financial eXchange (IFX) Business Message Specification (BMS) is developed and
maintained as a cooperative industry effort among major financial institutions, service providers, and
information technology partners to achieve an open messaging standard for the financial services
industry. It provides a comprehensive data dictionary organized as an object model and a message
framework suitable for developing new financial industry services and software with common Service
Oriented Architecture (SOA) design methodologies.

The evolution of the financial services marketplace has begun to open up new business and technical
frontiers including Open Banking business practices, PSD2 directives, JavaScript Object Notation (JSON)
data representations and RESTful APIs. Many members of IFX Forum concluded that it was necessary to
assess how well the IFX Standard would adapt to this changing environment.

As a result, members of IFX Forum collaborated to produce a RESTful implementation of the current
standard. To accomplish this objective it was necessary to assess a variety of tools, consider several
different design approaches, and examine how the IFX Standard and framework could be adapted to
those considerations. The goal of this work has not been to define an exhaustive specification for IFX
RESTful implementations or to indicate a preferred implementation of any particular service. Rather,
the goal has been to provide an appropriate level of information to guide developers who want to use
the IFX Standard as a basis for Open Banking APIs using JSON and RESTful design concepts.

This document reports our analysis of adapting the IFX Standard to a RESTful API model. We compare
architectural models, design assumptions, and implementation strategies. Understanding these
concepts is essential to understanding design decisions that were made in our adaptation to OpenAPI
2.0 (formerly known as Swagger).1

The concepts in this report rely upon the currently published version 2.4 of the IFX BMS which is
available at this URL: https://bms.ifxforum.org/rel2.

After this work was completed, IFX Forum merged with NACHA—The Electronic Payments Association
and began collaboration with the API Standardization Industry Group (ASIG). Although, this document
does not address specific APIs or standardized APIs, it is a necessary precursor to the next stage of work
that will include creating IFX-based standardized APIs.

1 When IFX began this effort Swagger was being rebranded OpenAPI.

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 5

2 Model Comparisons
The IFX Standard is based on a Service Oriented Architectural model whose key components are Objects
and Messages. IFX Messages result in changes to data on the server or back-end systems of record. On
the other hand, in a REpresentational State Transfer (REST) framework, both client and server are
responsible for maintaining data (resource) state based on the interaction between them.

IFX SOA Model REST Model
Object
IFX Objects can be somewhat simplistically viewed
as organized sets of data of a particular type. All of
the data in an IFX Object is related to a business
concept or artifact. As in any typical banking
environment, the IFX Objects are subject to action
in more than one service interaction.

Resource
Resources in REST are analogous to Objects in RQ-
RS framework, but they are shallower in each
given step of interaction due mainly to the
absence of related resources. When applicable,
these relationships, along with the applicable
actions, are represented as REST hypermedia
controls.

Message
IFX Messages are defined to affect the state and
content of IFX Objects. The standard does not
define implementation details, but IFX Messages
are readily represented in XML and can easily be
mapped to typical database CRUD (Create, Read,
Update and Delete) activities.

API
At a very high level, the REST-based client-server
interaction is a manipulation of a distributed
system via sending “images” of data back and
forth. These images are resource states. Hence the
name REpresentational State Transfer.

IFX messages act on IFX Objects and are therefore readily adapted to REST concepts
where APIs (messages) affect the state of a resource (object).

2.1 Process Flow
The RQ-RS model may be viewed as a Remote Procedure Call (RPC) model. In RPC, a server is
responsible for updating and processing based on a “script” of commands from a client. This script flow
is predefined and known to the client before interaction happens. These flows are typically documented
as sequence diagrams.

In REST frameworks, both client and server are responsible for maintaining data (resource) state based
on the interaction between them. The interaction flow is driven by client decisions. In contrast with RPC
case, the server gives the clients applicable choices of flow during the interaction via hypermedia
controls. The results of these interactions are typically documented as state model diagrams.

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 6

Perhaps the most significant
design challenge is to make APIs
resilient to change in the face of
broad adoption.

APIs must be robust enough to
guarantee a useful lifetime for
clients while simultaneously being
responsive to the need for change.

The table below summarizes two significant and intentional differences between REST and RQ-RS
frameworks taking process flows into consideration. The IFX Architecture more closely resembles REST
than RPC.

RQ-RS (RPC) REST
The state of interaction may be kept by the server
for the duration of the session.

Client-server interaction in REST intentionally lacks
persisted state of the interaction at any moment.

Possible flows of an interaction are defined in the
RPC before client and server engage, and the
clients have knowledge of all possible paths.

In REST, clients do not have to know all possible
pathways of conversations. These choices are
given to them by servers through hypermedia
controls.

Other practical differences are mostly derived from the above. Here is a somewhat general, but correct
explanation of practical aspects. REST APIs are designed around resources, their states, and transitions
between these states, while RPC interactions are designed around business functions and processes.
REST API data exchange is leaner, but chattier than the RPC interaction.

REST APIs are suitable for distributed systems with eventual data consistency, while RPCs are better
suited for centralized systems with immediate data consistency.

2.2 Design Considerations
When designing APIs (RESTful or otherwise) developers must
be aware that some of the typical design and development
disciplines carry additional importance in order to create
manageable systems. Perhaps the most significant design
challenge is to make APIs resilient to change in the face of
broad adoption.

APIs must be robust enough to guarantee a useful lifetime for
its clients while simultaneously being responsive to the need
for change. API designers must strike a good balance between
robust functionality and the time it takes to design and deliver
an API to market. These competing requirements result in
additional emphasis on designing and implementing
transparent, non-breaking extensions.

Design considerations to take into account:

• An appropriate versioning approach should be defined and adopted in order to manage change
and facilitate upward migration of client software.

• A disciplined extension mechanism should be adopted if customizations are to be offered. It
should be capable of permitting incremental changes without breaking interoperability with
older clients.

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 7

• Choosing tools that readily support these requirements on compatible platforms with necessary
programming language and data representation is also essential.

See Appendix B for a more detailed review of some of the design choices we considered including
OData, custom Media-Types, JSON-LD and others.

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 8

3 The IFX RESTful Lab
To demonstrate the operation of the IFX messages in a RESTful environment, it was necessary to build a
server application that could process and respond to RESTful calls. Having no banking core application to
interface with, we were limited to operating on the RESTful resource(s) as defined.

3.1 General Discussion
Our goal was to apply the RESTful
methods of GET, PUT, POST, DELETE and
PATCH and build an HTTP server
application that could accept and
respond to these Methods.

Users of IFX will recognize that these
methods correspond closely with the IFX verbs: Inq, Add, Mod, Can and Del.

We chose to build this application as a J2EE application that we could run in the Tomcat environment we
have for the management of the IFX BMS. In addition, we required an environment to store the RESTful
Resources the IFX BMS defines. Since we were not attempting to build a core banking system, all we
required was the ability to store, retrieve, replace and delete Resource instances. To that end, we
leveraged our MySQL environment by creating a database for our Resource instances.

IFX has from the beginning had the
notion of a request identifier (RqUID)
that serves many purposes, including
duplicate detection and a message
header (MsgRqHdr) used to pass
security credentials. The IFX API
working group decided to carry each of
these as parameters to the RESTful
environment.

The IFX API working group also decided
to use the OData 4.0 specification as a
model for record selection and records
control that were also implemented as
parameters to requests as shown in the
table.

Method calls that required passing data
records from the client to the server would be placed as JSON strings in the HTTP body. In the case of
the PUT and POST, these would be resource instances. In the case of PATCH, this would be a 'difference'
document based on the IETF RFC6902.

RESTful Method IFX Verbs
GET Inq
PUT Add
POST Mod (complete replacement)
DELETE Can, Del
PATCH Mod (differential replacement)

Method Parameter Optional/Required
GET IFX-RqUID Required
 IFX-MsgRqHdr Optional
 $filter Optional
 $fields Optional
 $limit Optional
 $offset Optional
 $order_by Optional
 $exclude_url Optional
 $exclude_rec Optional
PUT IFX-RqUID Required
 IFX-MsgRqHdr Optional
POST IFX-RqUID Required
 IFX-MsgRqHdr Optional
DELETE IFX-RqUID Required
 IFX-MsgRqHdr Optional
PATCH IFX-RqUID Required

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 9

3.2 IFX-Specific Extensions
We also implemented a variant of the GET Method that accepts the URL extension of $count, which will
respond with the count of resource records (which may include a $filter parameter). Clients may want to
have some concept of the scope of a GET
request before requesting large data sets
given that banking systems typically
contain large databases.

Lastly, we defined variants of the POST
Method to accomplish the Rev (Reverse)
and Can (Cancel) verbs defined in the IFX
BMS. These particular extensions are
unique to the IFX specification, but the pattern is quite likely to be generally applicable.

3.3 Sample Data and Storage
Given the “demo” scope of our implementation, we were able to keep our database interface layer
minimal. Resource instances are stored as text blobs, exactly as received, and are returned in the same
form. Since we knew that our database would be small – limited to tens, perhaps hundreds of records –
we applied filtration in code after retrieval of all the records of a resource. Similarly, we could apply
PATCH requests by reading a record, applying the patch in code, and writing the PATCHed record back to
the database.

Importantly, before any record is written to the database we leverage the JSON Schema derived from
the IFX BMS with a JSON Schema validator written in our code to ensure that the record matches
allowable definitions for that resource as defined in the IFX BMS. This does not guarantee that messages
have valid business data, but it does ensure that they are well-formed and consistent with the standard.

3.4 Our Implementation Platform
We settled on the following platform for our initial project as reasonably representative of a typical
RESTful API service platform:

• JSON representation of IFX Objects
• Deployed with SwaggerIO and Azure API management developer portals, which both use

OpenAPI v2.0 protocol
• JavaScript with JQuery for client examples
• MySQL Object store for demo data

Method Extension Optional/Required
GET IFX-RqUID Required
 IFX-MsgRqHdr Optional
 $count Optional
POST IFX-RqUID Required
 IFX-MsgRqHdr Optional
 $reverse Optional
 $cancel Optional

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 10

4 Sample APIs

4.1 Overview
We created several sample APIs to prove the viability of our design decisions. The APIs described here all
use the standard IFX Object definition for Account <Acct> and access data by way of the code we
generated from the IFX BMS v2.4.

Every object in the IFX specification is constructed using the pattern
illustrated below. For our demonstration, it was simply a matter of
implementing a sample database that stores IFX Account objects in the
JSON representation that we generated from the IFX BMS Database. The
JSON representation starts with the object record that contains the key
(ID) and three objects as shown in the table at right.

Appendix A shows some functional JavaScript code that illustrates the simplicity of extracting data from
the resources returned by the server in response to AJAX calls.)

Take a look at this code snippet. For those
familiar with the IFX specification, it is
obvious how the resources returned from
the server are organized, as illustrated
above, and assigned to similarly named
variables in the front-end application.

A code snippet that shows how data is assigned to
JavaScript variables
var acctObj = data;
var acctid = acctObj.AcctId; // string
var acctInfo = acctObj.AcctInfo; // object
var acctStatus = acctObj.AcctStatus;
var acctEnvr = acctObj.AcctEnvr;
var acctBal = acctObj.AcctInfo.AcctBal; // array
var acctObjStr = JSON.stringify(acctObj);

// AcctObj has four items
// 0 - Key (string)
// 1 – AcctInfo (obj)
// 2 - AcctEnvr (obj)
// 3 - AcctStatus (obj)

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 11

4.2 Validate Account
In practice, the Validate Account scenario would be used to ensure an account number is correct and
that the account is active to make and/or receive payments. This scenario may have several variations.
Essential to most scenarios is the need to ensure that an account is open at the financial institution
handling the request and that the name on the account matches that known by the requester.

In our demonstration, we do not attempt data validation. Instead we display the data attributes that
might be typically returned by the API.

4.3 Get Account Balance
In practice, the Get Account Balance API would be used to retrieve the current balance for a specific
account. This might be used to ensure a balance sufficient to make a payment. The Get Account Balance
API is likely to be a common element of many business scenarios.

4.4 Get PSD2 Account Information
PSD2 requires banks to share certain account information more broadly than banks have done
historically. This is driving banks to standardize mechanisms and interfaces in order to avoid a chaotic
mix of point-to-point interfaces with
AISPs (Account Information Service
Providers).

The PSD2 Account Information API
example demonstrates one possible
solution to standardizing account
information to be shared with
aggregators and other AISPs. The IFX
Standard includes all of the data
elements commonly used in ISO
20022 and much more. Take a look
at the IFX Account Information API
to get a sense of some of the
additional data defined in the IFX
Standard.

4.5 Get IFX Account Information
The IFX Standard includes a very robust definition of the elements and structure of an Account Object.
This API provides a representative sample of the information available.

In practice, this API might be used to retrieve detailed information about an account. The amount of
detail available might be limited by the role and authorization level of the user invoking the API or by
business requirements and/or constraints.

var acctObj = data;
var acctid = acctObj.AcctId; // string
var acctInfo = acctObj.AcctInfo; // object
var acctStatus = acctObj.AcctStatus;
var acctStatusCode = acctObj.AcctStatus.AcctStatusCode;
var acctEnvr = acctObj.AcctEnvr;
var acctTitle = acctInfo.AcctTitle;
var acctType = acctInfo.AcctType.AcctTypeValue;
var acctIBAN = acctInfo.IBAN;
var acctOpenDt = acctInfo.OpenDt;
var acctBal = acctObj.AcctInfo.AcctBal; // array
var acctBalType = acctBal[0].BalType.BalTypeValues;
var acctBalAmt = acctBal[0].CurAmt.Amt;

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 12

4.6 Server Interaction
In practice, each interaction between a client and server has certain technical and syntactical
requirements that cannot be ignored. The remainder of this section illustrates a few of the details of our
implementation that should be informative to potential implementers. These illustrations are not
exhaustive.

We used fairly typical AJAX techniques to invoke the server processing at a well-defined endpoint. Also,
as would be typical, we created reusable JavaScript functions to handle these calls.

Our endpoint (URL) for an account lookup:
https://bms.ifxforum.org/api_ifx2_4/accounts/

Our required parameter for these examples (an account ID or token):
01234567-0123-0123-0123-01234567890a

In actual practice, we invoke a function using the URL described above and the account token as
parameters url and parmid.

function xhr_get(url, parmid) {}

The function uses these values to construct a URL as follows:
GET "https://bms.ifxforum.org/api_ifx2_4/accounts/01234567-0123-0123-0123-01234567890a"

Typically, API servers require additional information for authorization and authentication. Our
implementations on the RESTful Lab and the Microsoft Azure platform are no different, but these
platform and implementation-specific features are not detailed here.

Finally, our implementation requires the HTTP header data to include two fields (media type and IFX
RqUID). The IFX RqUID value is unique to each message invocation:

"accept: application/json" , "IFX-RqUID: 01234567-0123-0123-0123-01234567890a"

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 13

5 Summary

5.1 Key Learnings
The IFX Standard and the IFX Message Framework are readily adaptable to REST design concepts. This
paper describes many of the design decisions we have made and illustrates how to map the IFX
Standard messages (methods) to RESTful concepts and HTTP verbs.

IFX Objects can be implemented directly as JSON resources, but more work needs to be done to define
resources that are not as deeply nested as many of the structures currently defined in the specification
for the purposes of APIs.

We concluded that choosing a query language for all of the APIs we develop will significantly reduce the
initial effort associated with learning how to use the APIs and reduce ongoing maintenance costs over
time. We chose to adapt a subset of the query language developed for OData. It is a proven protocol
that is also very comprehensive and robust.

JSON schema and OpenAPI2.0 tooling are not capable of expressing many business constraints –
especially logical data relationships, complex cardinality rules, and if-then-else conditions. Consequently,
it places a burden on back-end code to validate these business rules.

5.2 Next Steps
Our work up to this point shows that one can immediately start to adapt the IFX standard to RESTful
Open Banking APIs, and we have provided some tools to jump-start those efforts. Broadly speaking we
need to take steps to formalize specific APIs as industry standards.

Specifically, we have identified the following tasks:

• Define resources from the IFX Object model that satisfy narrowly defined microservices and
business use cases;

• Review and formally publish the design choices we have described here as part of the IFX
Standard;

• Validate the IFX OpenAPI files with additional development tools;
• Review whether it is appropriate to develop and make available JSON schema that support

complex logical rules;
• Create documentation templates that facilitate consistent understanding of the scope and

applicability of standard APIs;
• Formalize additional API response mechanisms to support many of the concepts embodied in

IFX message status and response codes;
• Review the benefits and advisability of submitting our recommendations as a formal media-type

under W3C;
• Review the various versioning and extension strategies in order to adopt or recommend best

practices; (See Appendix B.)
• Coordinate with ASIG participants to implement specific IFX-based APIs.

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 14

In our discussion and review of the results, we have begun to consider the importance of media-types in
RESTful implementations. Further research and analysis are required to determine whether our API
standardization efforts would benefit by leveraging hyper-media controls (Hypermedia as the Engine of
Application State or HATEOAS) and whether this will contribute to more reliable interoperability and
foster adoption.

5.3 How You Can Leverage Our Results
Begin with the OpenAPI 2.0 files derived from the IFX BMS. Load the OpenAPI 2.0 file into a UI or API
Management environment of your choice. (We have proven that the SwaggerIO and Microsoft Azure
tools are capable of dealing with the files we generate. We will be working with members and others to
validate other tools.)

Modify model definitions to incorporate your customizations:

• Name new or changed elements with a prefix to easily identify them as extensions to IFX
(mimic namespace separation available in XSD). This will help you manage changes as IFX
makes further progress advancing the standard to REST.

• Leverage a validating editor like the Swagger Editor.
• Change the 'host' as defined in the OpenAPI 2.0 file, to point to your target host.

Deploy a host that meets these requirements, at a minimum:

• Code support for HTTP methods GET, POST, PUT, DELETE and PATCH for the URLs defined in the
OpenAPI file.

• Validate the data passed in by each request, responding with a '400 - Bad Request' for
nonconforming requests.

Begin testing and report your experience back to IFX on the IFX Community Forum. We value your
feedback and will incorporate it into our thinking as we advance the standard. In addition to API topics,
the IFX Community Forum also provides a wealth of information about how to leverage IFX generally
and how to use the IFX BMS as a searchable glossary and object model.

5.4 Conclusion
The IFX Standard and the IFX Message Framework are readily adaptable to REST design concepts. This
paper describes many of the design decisions we have made and illustrates how to map the IFX
Standard messages (methods) to RESTful concepts and HTTP verbs.

IFX Objects can be implemented directly as JSON resources, but more work needs to be done for the
purposes of APIs to define resources that are not as deeply nested as many of the structures currently
defined in the specification.

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 15

We have not committed to a timeline for the work implied here, but we recognize that addressing these
considerations will improve the viability of IFX standard APIs, making them more understandable to
developers and reducing the effort necessary to adopt the standard.

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 16

6 Appendix A

6.1 Example Client-side JavaScript Code
This Appendix includes some samples of JavaScript functions (using JQuery) we developed to
demonstrate the use of IFX.

function showOneAcct(parmid) {
 // IFX Object representation
 xhr_get(baseurl + '/'+parmid, parmid).done(function(data){
 var acctObj = data;
 var acctid = acctObj.AcctId; // string
 var acctInfo = acctObj.AcctInfo; // object
 var acctStatus = acctObj.AcctStatus;
 var acctEnvr = acctObj.AcctEnvr;
 var acctBal = acctObj.AcctInfo.AcctBal; // array
 var acctObjStr = JSON.stringify(acctObj);

 // call a simple table formatter for the Object (recursively displays nested objects)
 tableform(acctObj);

 // We could substitute any of the returned objects for display
 tableform(acctInfo);
 tableform(acctStatus);
 tableform(acctEnvr);
 })
};
function showPSD2Acct(parmid) {
 // PSD2 Example
 xhr_get(baseurl + '/'+parmid, parmid).done(function(data){

 var acctObj = data;
 var acctid = acctObj.AcctId; // string
 var acctInfo = acctObj.AcctInfo; // object
 var acctStatus = acctObj.AcctStatus;
 var acctStatusCode = acctObj.AcctStatus.AcctStatusCode;
 var acctEnvr = acctObj.AcctEnvr;
 var acctTitle = acctInfo.AcctTitle;
 var acctType= acctInfo.AcctType.AcctTypeValue;
 var acctIBAN = acctInfo.IBAN;
 var acctOpenDt = acctInfo.OpenDt;
 var acctBal = acctObj.AcctInfo.AcctBal; // array
 var acctBalType = acctBal[0].BalType.BalTypeValues;

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 17

 var acctBalAmt = acctBal[0].CurAmt.Amt;
 })
};

function getAcctBal(parmid) {
 xhr_get(baseurl + '/'+parmid, parmid).done(function(data){
 var acctObj = data;
 var acctBal = acctObj.AcctInfo.AcctBal; // array
 var acctBalType =acctBal[0].BalType.BalTypeValues;
 var acctBalAmt = acctBal[0].CurAmt.Amt;
 })
};

function validateAcct(parmid) {
 //var acctid = $("#enterAccount").val();
 // alert("validate acct " + acctid);
 // alert("parmid ="+parmid);
 xhr_get(baseurl + '/'+parmid, parmid).done(function(data){
 var acctObj = data;
 var acctBal = acctObj.AcctInfo.AcctBal; // array
 var acctStatus = acctObj.AcctStatus.AcctStatusCode;
 })
};

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 18

7 Appendix B

7.1 Further Exploration of Alternative Design Options
When designing APIs (RESTful or otherwise) developers must be aware that some of the typical design
and development disciplines carry additional importance in order to create manageable systems.
Perhaps the biggest challenge is to make APIs resilient to change in the face of broad adoption. APIs
should be made robust enough to guarantee a useful lifetime for its clients while simultaneously being
responsive to the need for change. API designers must strike a good balance between robust
functionality and the time it takes to design and deliver an API to market. These competing
requirements result in additional emphasis on designing and implementing transparent, nonbreaking
extensions.

7.2 Further Discussion of Version Management
REST principles advise that clients must be able to
discover objects/resources at run-time since they are
unaware of a back-end schema. Media-types are one
mechanism that can allow RESTful APIs to work in the
absence of pre-agreed object model schema. One of
extensively developed media types designed for this
purpose is JSON-LD.

JSON-LD allows for discovery of resource structures. We did not use this technique when we built our
client examples, relying instead upon our knowledge of the IFX object and message structures. We have
not ruled out using this approach in the future since APIs built using this approach are resilient to
change.

This technique might be viewed as a late binding protocol, where the API elements are discovered, and
agreement is achieved at the execution time. Furthermore, a schema-less, vocabulary-based design
approach relies on external vocabulary of terms, possibly defined by standards like IFX, FIBO and ISO
20022.

Our working definition of media-type may differ from some common assumptions. For our purposes we
view media-types as a meta-language used to design other aspects of APIs. It includes a set of syntactical
assumptions and agreements between clients and servers. It is a technology layer supporting business
logic and structures. It is defined on top of the transport layer and language such as JSON and HTTP.
Media-types define generic API controls for static and dynamic elements. For example, media-type could
facilitate a constant agreement about where and how a provider would be specifying relationships or
resource actions, and thus the clients would know where to look and how to interpret them.

Correctly chosen media-type can make or break the API. So, designing or finding an existing media-type
that has all desired features for a RESTful API is a significant effort. During this phase, an API
development team would be making a lot of decisions and compromises. For now, we have chosen
OpenAPI as our base media-type.

For our purposes, we view media-types
as a meta-language used to design other
aspects of APIs. It includes a set of
syntactical assumptions and agreements
between clients and servers.

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 19

IFX may choose to complete the exercise of formalizing the IFX RESTful format as a meta-syntax that
describes the structure or our message format. This technical work would effectively define an
unregistered media-type. However, it would not address the standardization of business definitions.

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 20

8 Appendix C

8.1 IFX Messages adapted to HTTP Verbs
The following general use of HTTP Verbs is proposed:

• POST = Add
• PUT = Replace
• PATCH = Update
• GET = Inquiry
• DELETE = Delete

The verbs will act on IFX Object, usually in JavaScript Object Notation (JSON) syntax, whose top-level
contents consist of the following:

begin Aggregate

SvcIdent

Aggregate Optional

Service Identifier

xxxId

Identifier Required

Account Identifier

xxxxInfo

Aggregate Required

Account Information Aggregate

xxxEnvr

Aggregate Optional

Account Environment Aggregate

xxxStatus

Aggregate Required

Account Status Aggregate

end Aggregate

For the purposes of RESTful APIs, SvcIdent is deprecated from the above. The general use of JSON is
recommended to encode the data contents of parameters and other data values exchanged via IFX
REST-based messages.

Where HTTP header values are used, it is proposed that they be prefixed with “IFX-” to keep them from
conflicting with other headers. For example, when the “RqUID” field is placed in an HTTP header, it is
named “IFX-RqUID”.

IFX message
 Replaced with->

Http
VERB

HTTP
URL Example

HTTP Headers
(JSON)

HTTP Body
(JSON)

xxxxAdd POST ../Acct IFX-RqUID
IFX-MsgRqHdr

xxxxInfo

Copyright © 2018, Interactive Financial eXchange Forum, a division of NACHA Page 21

IFX message
 Replaced with->

Http
VERB

HTTP
URL Example

HTTP Headers
(JSON)

HTTP Body
(JSON)

xxxxCan (b) POST ../CardOrder/$cancel IFX-RqUID
IFX-MsgRqHdr

xxxxId
xxxxInfo

xxxxDel DELETE ../Acct/{ID} IFX-RqUID
IFX-MsgRqHdr

xxxxInq (a) GET ../Acct/{ID} IFX-RqUID
IFX-MsgRqHdr

xxxxInq (b) GET ../Acct

(See Notes below on
optional system query
parameters.)

IFX-RqUID
IFX-MsgRqHdr

xxxxMod
(replace)

PUT ../Acct/{ID} IFX-RqUID
IFX-MsgRqHdr

AcctInfo

xxxxMod (a)
(update)

PATCH .. /Acct/{ID} IFX-RqUID
IFX-MsgRqHdr

patch update directions based
on RFC 6902 or RFC 5261

xxxxRev POST ../Acct/$reverse IFX-RqUID
IFX-MsgRqHdr

RevReasonCode, Desc, RqUIDrev

Regarding (a) and (b) versions of IFX message mappings to HTTP verbs and URLs, the (a) versions of the
mappings embed an IFX Object ID in the URL to the REST resource where the (b) versions of the
mappings instead pass an IFX data section parameter such as xxxSel, xxxRec, xxxKeys, etc. Use of either
form of these mappings is at the discretion of the IFX implementer.

* * *

	1 Introduction
	2 Model Comparisons
	2.1 Process Flow
	2.2 Design Considerations

	3 The IFX RESTful Lab
	3.1 General Discussion
	3.2 IFX-Specific Extensions
	3.3 Sample Data and Storage
	3.4 Our Implementation Platform

	4 Sample APIs
	4.1 Overview
	4.2 Validate Account
	4.3 Get Account Balance
	4.4 Get PSD2 Account Information
	4.5 Get IFX Account Information
	4.6 Server Interaction

	5 Summary
	5.1 Key Learnings
	5.2 Next Steps
	5.3 How You Can Leverage Our Results
	5.4 Conclusion

	6 Appendix A
	6.1 Example Client-side JavaScript Code

	7 Appendix B
	7.1 Further Exploration of Alternative Design Options
	7.2 Further Discussion of Version Management

	8 Appendix C
	8.1 IFX Messages adapted to HTTP Verbs

